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Abstract

Data distribution is an important step in implementation of any parallel algorithm. The
data distribution determines data traffic, utilization of the interconnection network and
affects the overall code efficiency. In recent years a number data distribution methods
have been developed and used in real programs for improving data traffic. We use some
of the methods for translating data dependence and affinity relations into data distribu-
tion directives. We describe an automatic data alignment and placement tool (ADAPT)
which implements these methods and show it results for some CFD codes (NPB and
ARC3D). Algorithms for program analysis and derivation of data distribution imple-
mented in ADAPT are efficient three pass algorithms. Most algorithms have linear com-
plexity with the exception of some graph algorithms having complexity O(n?) in the worst
case.

1. Introduction

Well organized data layout improves performance of a parallel program. Data loca-
tion and access patterns affect the amount of communications in the program, effective-
ness of the cache, memory channel and communication network. Data traffic planning
was important for gaining performance of vector and MIMD machines; it is still impor-
tant for ccNUMA machines and will be more critical for machines with deeper memory
hierarchy. Processing dependent data items requires the items to be loaded into the same
processor at the same time. Data dependence and data layout determines the data traffic
at the execution time. The volume and speed of data traffic can be optimized by appro-
priate alignment and distribution of the data.

In many applications (including Computational Fluid Dynamics (CFD) on structured
grids) the data dependences are well structured. Such dependences can be expressed by
structured affinity relations between arrays and can be translated into HPF (High Perfor-
mance Fortran) data alignment and data distribution statements. Derived in this way,
data distributions convert the program into a data parallel form with well organized data

traffic.
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In this paper we present an Automatic Data Alignment and Placement Tool
(ADAPT) designed and implemented to facilitate conversion CFD codes to HPF. The tool
was successfully applied to a number of CFD codes, including NAS Parallel Benchmarks
(NPB), [4], and ARC3D, {8]. ADAPT implements a number of known data distribution
techniques, see Section 9, involving memory traffic reduction via data distribution opti-
mization. We start from the program model and an internal representation of the pro-
gram. Then we analvze the array affinity on the loop level, nest level and routine level and
develop translation of the affinity relation into HPF data mapping directives and discuss
interprocedural data distributions. Then we compare ADAPT generated versions of NPB
and ARC3D with hand written versions. We conclude the paper with a survey of existing

data distribution methods, some observations, and plans for future work.

2. Program Model

In this context we plan to annotate Fortran programs with data traffic optimizing data
alignment and distribution directives (we will use the word “mapping” to refer to both
directives) and with HPF interface blocks. These directives will be inserted immediately
before loop nests or before the first executable statement in a subroutine. These directives
do not affect control flow of the program on single processor. The directives, however,
can have side effects on parallel machines if processors are not synchronized before and
after the execution of the REALIGN and REDISTRIBUTE (see [14]) directives. We will as-
sume that the program is compiled with an HPF compliant compiler and that the proces-
sors involved in the execution are synchronized before and after REALIGN and
REDISTRIBUTE directives.

For analysis and transformation purposes, a Fortran program is represented by con-
trol a flow graph [1]. The nodes of the graph are program basic blocks (BB) and arcs are
possible transitions between BB. The control flow graph is augmented with parse trees for
each statement in the block. ADAPT transforms the control flow graph into another graph
which is used for generation of the annotated (and modified) program.

The data dependence and data affinity play crucial role in our development. We say
“data item x depends on data item y if value of x depends on value of y” (see [1] p. 284,).

If the data items are defined by variables X and Y respectively, we say that “X depends



on Y”.If X and Y are array variables, we call the set of pairs of dependent array elements
“affinity relation between X and Y. The affinity relation can be translated into array align-
ment. The appropriate distribution of aligned arrays reduces the data movement

performed by the program.

3. Loop Data Alignment
Loop level alignment is derived from the affinity relation between arrays referenced
in the loop, and the loop Data Transfer Graph (DTG).

Affinity relation. For a pair of arrays used in the same loop statement, we define the
affinity relation as a correspondence between array elements referred with the same val-
ue of the loop index. The affinity relation can be represented as a list of dependent pairs:

do i=1,n
a(idxa(i))=b(idxb(i))
end do
c Aff(a,b)={(idxa(i);idxb(i)), i=1,...,n}
An affinity relation exists for each pair of arrays referred in a statement. Similarly, a con-
trol dependence results in affinity relations between the arrays involved in the control
statement and all arrays in each BB immediately dominated by the statement.

Data Transfer Graph™. Each variable used in the loop is represented as a node in DTG.
Two nodes are connected by an arc if the value of the first variable is used for computa-
tion of the second, Figure 1. An arc connecting two arrays we annotate with an affinity
relation between the arrays. For array A and any of its ancestor B an affinity relation be-
tween A and B can be inferred by applying the ajﬁniiy chain rule along each directed path
from B to A.

“The term Data Transfer Graph is used to avoid any confusion with Data Flow Graph where nodes are program state-
ments, with statements A and B connected by an arc if a variable assigned in A is used in B.



do 7 =1, m Y
x1l = y(3,111+k) v
X2 = y(3,112+k)
x(3j,121+k) = x1 + x2 u x1 x2
X(2,122+k) = u*(xl - x2)
end do T Y
X

FIGURE 1. Data Transfer Graph of internal loop of vectorized
autosorting FFT from FT benchmark.
The Affinity Chain Rule. Consider two statements in a loop

do i=1l,n
b(idxbl (i) )=c(idxc(i)) 'Aff(b,c)={{idxbl (i) ;idxc(i))}}
a(idxa(i))=b(idxb2 (1)) 1aAff(a,b)={({idxa(i);idxb2 (1))}
end do

The chain rule allows to track affinity relation for indirectly dependent arrays:

Aff(a,c)={(idxa(i);idxc(3)),
j = max{J: J<=1i,idxbl(J))=1idxb2(i)}}

Iterative application of affinity chain rule allows to find the closure of affinity relation
on a loop in DTG. For an array assigned in the loop, it expresses the affinity relation of an
array with each array it depends on. In general, due to the max operation involved in the
chain rule, the affinity relation can not be expressed explicitly". In practice, the affinity re-
lation often can be expressed explicitly or can be approximated by a simple explicit rela-
tion. For example, if array indices are linear functions of the loop index, then the affinity
relation can be represented by a linear mapping between array indices. The majority of
affinity relations in CGD codes fall into three classes.

One-to-one affinity relations. In this relations each element of 2 depends on a single el-
ement of b and a single element of ¢,Figure 2. This affinity relation can be translated into
an alignment with communication-free computations. The HPF alignment directive as-
serts that the corresponding elements are aligned. As result, no communications are nec-

essary (regardless of the distribution). For the translation to be possible, array subscripts

“In Section 4. we show that the problem of checking that an element of multidimensional array is affine with an ele-
ment of another array is NP-complete.



should satisfy one condition: at most one subscript the coefficient different from {+1,-1}".

'HPFS$ ALIGN A(i) WITH B(i+3)
'HPFS$S ALIGN 3(j) WITH C(5*(n-3J)-4)
'HPF$ DISTRI3UTE C (BLOCK)
do i=1,n
b(n-i)=c(3*i-4)
a(i-1)=b(i+2)
end do
c Aff(a,c)={(i-1:5*j-4), j=max{J: J<=1i,n-J=1i+2}}
c or Aff(a c)={(i-1;5*j-4), j=max{J: n-2<=2*i,J=n-1-2}}
c or Aff( )={(i-1;5*n-5*1-14), n-2<=2*1i}

FIGURE 2. Translation of one-to-one affinity relations into an alignment providing
communication free computations. Note that the alignment statement for ¢ is stronger

then required by Aff(a,c).

Stencil Affinity Relations. It is a relation where elements of array b affine with each el-
ement of array a (excluding some boundary elements) comprise the same stencil.Explicit
difference operators for structured grids, for example, give rise to such relations. To op-
timize alignment for a stencil relation we note that for block distribution the message size
per partition point is the sum of distances of the alignment point from the other stencil
points, Figure 3. To minimize the message size we use bisectors (points splitting stencil
points into two sets of equal size) as alignment points and we generate alignment as bi-

sectors of the affinity points in the alignee.
partition point
1D grid ' ; , Alignment point, sum of distances =3
~ : b :

1 word to communicate
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‘The syntax of the ALIGN directive ({14], p. 116) allows to use only align dummies in align subscript list and integer
expressions of align dummies in align subscript.



FIGURE 3. The message size per partition point is sum of distances of the alignment

point from the other stencil points.

True dependence. 1f there is a directed path in DTG which starts and ends in the same
node, then there is a dependence carried by the loop. Iterations of the chain rule along the
path expose an affinity of each array element with multiple elements of the same array.
There are two important cases: the dependence is “true” when previously computed ar-
ray elements are used and “anti” when a used array element is overwritten, [12]. The anti
dependence can be eliminated by making an extra copy of the array. If the true depen-
dence has a constant step d then a cyclic distribution onto d processors would create com-

munication free computations.

4. Loop Nest Data Alignment and Distribution

If arrays referenced in a loop nest have more than one dimension (3 and 4 dimension-
al arrays are most common for structured grid CFD) then we must consider all loops sur-
rounding computations with the arrays to obtain complete data affinity. In CFD
applications, loop index bounds are usually linear functions of the surrounding loop in-
dices, hence the nest index domain can be described as a set of integer points in a polyhe-
dron’.

The chain rule for loop nests is similar to one for loops:

do 10 I from PI

b(idxbl(I))=c(idxc(I))
a(idxa(I))=b(idxb2(I))
10 continue
c Aff(a,c)={(idxa(I);idxc(J)),

‘We will use multidimensional indices, functions and domains in this section. It will make presentation more com-
pact and the analogy between loops and nests more transparent. For example, instead of
do i=1,nx
do j=1,nv(1)
do k=1,nz(i,7)
a(idxal(i,j, x),idxa2(i,3,k),idxa3(i,j,k))=
b(idxbl(i,j, k), idxb2(i,j, k), idxb3(1i,3,k)}
end dc
end do
end do

we will write
do 10 I from PI
a(idxa(I}i)=b(idxb(I))
10 continue



c J=max{j: j<=I,idxbl(j)=1dxb2(I)}} (*)
where the max operation and inequality {j<=I} are performed in the lexicographical order.
For statements with different nesting the chain rule is similar:

do 10 Z from PI
do 2> J from PJ
b(idxbl(I,J))=c(idxc(I,J))
20 continue
do 33 K from PK
a(idxa(I,K))=b(idxb2(I,K))

30 continue

10 continue

c Aff(a,c)={(idxa(I,K);idxc(L,J)),

c (L, J)=max{(1,3):1<=I,idxbl (1, j)=1dxb2(I,K)}}

Example. The problem of checking that an element of array is affine with an element of an-
other array is NP-complete. Let nest loop bounds are 0 and 1, meaning that PI is a boolean
cube. Let I=(1....,1) which means that the inequality {j<=I} is true for all j from PI. In this
case if idxb1(j) is an arbitrary linear form of j then calculating the value of Jin (*) is a special
case of the Boolean Knapsack Problem. In practice, however, the number of array dimen-
sions is fixed (it does not exceed 7 for CFD codes) and index functions are linear functions.
In this case the affinity relation can be calculated in polynomial time by Lenstra’s algo-
rithm, see [22].

The chain rule allows to construct an affinity relation for each directed path coming
to a from b and passing only through privatizable arrays. The union of these relations over
all directed paths to a from b yields the final affinity relation betweena and b. The relation
lists all elements of b used for computation of the element of a4 and can be considered as
one-to-many mapping. In most practical cases, this is a one-to-few stencil relation; a bi-
sector of the stencil gives an optimal alignment. Many CFD stencils have a center of sym-
metry which can be used as the alignment point.

Alignment with Systems of Linear Forms. Each array reference in the loop nest defines a

mapping of the nest domain into array index space. Here we consider linear mappings:

d =Al+b

*Bisector of a finite set in n-dimensional space is a point such that each coordinate hyperplane passing through it
bisects the set. 3-point LU stencil shows that not every set hasa bisector.
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where d ba an array and ! be the nest indices, A is a matrix with constant elements and b
is a vector with constant elements.

For linear index functions, the affinity relation can be expressed in the form:
Aff(xy,x:)={(A;*I+by;Ay*I+by), I from PI}
We want to translate this relation into alignment directives of the form
'HPFS ALIGN 71(il,...,in) WITH Y2(ml*jl+cl, ..., mn*jn+cn)
where my,...,m, are integer multipliers, c;,...,c,, are integer shifts, (iy,...,i,)->(j;,...,j,,) is a di-
mension permutation, Y; and Y, are x;, x;, or auxiliary templates.

Ina common case, when one matrix (say Al) is nonsingular, the relation may be writ-

ten explicitly:
Aff(xy, %) ={(d;;AA, 1d;-AA; 'by+by), d; from A,PI+b,} (1)
If the matrix A,A; ! can be transformed to an integer diagonal matrix diag(m;,...m,) by
a permutation of the columns, then -A,A; 1by+b; = (c;,...,¢,) is an integer vector and the
relation can be translated to an alignment directive:
'HPFS$ ALIGN x1(il,...,in) WITH x2(ml*jl+cl,...,mn*jn+cn) (2)
where (iy,...,1,,)->(j;,...,j,) is the column permutation.

If the matrix A,A; ! cannot be reduced to a diagonal form by permutation of columns,
then (1) would require presence of general linear forms in the align subscript list which is
not permitted in HPF, see [14], p. 116. The relation (1) cannot be expressed by HPF ALIGN
directive also if both AA; ! and A;4, T have noninteger elements. In such a case we can
look for a submatrix of A; and A; having the property. If such submatrix exists, the align-
ment is performed on the corresponding set of indices.

The generation of alignment directives uses the alignment graph derived from DTG. The
nodes of the alignment graph are non privatizable arrays of DTG. Two nodes of the align-
ment graph are connected if in DTG they are connected by a directed path passing
through privatizable variables only. We annotate each arc of the alignment graph with a

list of closures of affinity relations along each simple path connecting the arrays in DTG .

" This is the most expensive operation of the method. It mvolves a few matrix multiplications for computa-
tion of the set of directed paths and has complexity O(n?), where n is the number DTG nodes.



For each arc in the alignment graph, we analyze the affinity relations attached to it. If
all relations are expressed in the form (1) and have the same dimension permutation, then
we will generate directive (2). In the directive, each multiplier is the greatest common di-
visor of multipliers of the relations, the shift is a bisector of the relations shifts and
(i1,-d)->(j1,-...J,) is the common dimension permutation.

A maximal equivalence class of graph nodes having directed paths in both directions
is called “strongly connected component” of the graph. The set of strongly connected
components forms a directed acyclic graph. and we attach a template to each node of the
graph. The affinity relation for loop nest then expressed as alignment of each array of the
strongly connected component with the template, as shown in Figure 4. The generation
of alignment statements for each connected component of a directed graph with affinity
relations attached to every arc is performed in three steps.

« 1. A common template is generated for all leafs of the component. Each leaf is
connected to the template with arc and appropriate affinity relation attached to
the arcs.

« 2. A rooted spanning tree is constructed for each component with the template
as the root.

« 3.For each non root node of the spanning tree, the alignment directive is gener-

ated for the arc leading from the node to the root (darker arcs in the Figure 5).

5. Subroutine Level Data Distribution

For data distribution on the subroutine level, we build a phase control flow graph
(PCFG) [15]. The graph nodes are loop nests having at least one nonprivatizable array
(following [15] we skip the loops (usually iteration loops) with the index not used as an
array index). Two loop nests are connected by an arc if there is a possible transition from
the last BB of one loop nest to the first BB of another loop nest. Given an alignment graph
and the ALIGN and DISTRIBUTE directives (mapping directives) for each nest of PCFG;
is it possible to combine the directives for a pair of adjacent nests in PCFG?

In simple cases (if alignment is the same in both nests) the answer can be obtained by
comparing distributed dimensions of arrays in each nest. In general, however, the answer

has to be obtained by attaching the second alignment graph to the first graph and getting



'HPFS$ TEMPLATE =—mpl_nest_41(64,64)
{HPEFS DISTRIBUTZ(BLOCY,BLOCK, :: tmpl_nest_42
'HPFS ALIGN FR::,:,*) WITH tmpl_nest_41(:,:)
'HPFS ALIGN (:,:,*) WITH FR(:,:,*) :: ZX,2Y,Z2Z,XX,XY,XZ,YX,YY,YZ
'HPFS ALIGN Q{(:,:,*,*) WITH FR(:,:,*)
DO 32 X=KLOW, XUP, 1
KP1=X2LUS (K; TK+1
KM1=xMINUS (X) 1K-1
DO 32 J=2,2M,1
BZ1l=ZX(J,K, 1) **2+2Z¥(J, K, L) **2+ZZ(J, X, L) **2
RHO=C 'J,K,L, 1} *Q(J,X,L,6)
U=XT-{XX{(J, X, L)*Q{(J,K,L,2)+XY(J,K,L)*Q(J,K,L,3)+XZ(J,.K,L) *Q(J
+ CJK,L,4))/Q(5,K, L, 1)
V=YT-{¥X(J,X,L)*Q(J,K,L,2)+¥YY(J,K,L)*Q(J,K,L,3)+YZ(J,K,L) *Q(J]
+ JKUL,3))/Q(5,K, L, 1)
S$1=-RH0*ZX(J,K,L) *(U*{Q(J+1,K,L,2)/Q(J+1,K,L,1)-Q(J-1,K,L,2)/
Q(J-1,K,L,1))}*0.5+V*{(Q(J,KP1,L,2)/Q(J,KP1,L,1)-Q(J,KM1,L,2)/Q
(J,KMI1,L,1))*0.5)
S2=-RHO*ZY(J,K,L) *~(U*(Q(J+1,K,L,3)/Q(J+1,K,L,1)-Q(J-1,K,L,3)/
Q(J-2,K,L,1))*0.5+V*(Q(J,KP1,L,3)/Q(J,KP1,L,1)-Q(J,KM1,L,3)/Q
(J,K¥M2,L,1)y*0.5)
S3=-R30*ZZ(J,K,L)*(U*(Q(J+1,K,L,4)/Q(J+1.K,L,1)-Q(J-1,K,L,4)/
Q{(J-_,X,L,1;)*0.5+v*{(Q(J,KP1,L,4)/Q(J,KP1,L,1)-Q(J,KM1,L,4)/Q
+ (J,KMZ,L,1))*0.5)

R1=8S1+S2+S3
FR(J.X,L)=(-2.*R1/BZ1+4.*FR(J,K,L1)-FR(J,K,L2))/3.
32 CONTINUE
CONTINUE

FIGURE 4. Example of the generated directives for one of the nests of ARC3D.

FIGURE 5. The data transfer graph of the nest of the Figure 4.

Dark arcs show a spanning tree.
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a mapping for the combined graph. If merging the mapping directives does not decrease
the number of distributed dimensions the scope of the mapping can be expanded to in-
clude both nests. If the common number of distributed dimensions is 0, then either a re-
distribution between the nests or pipeline the computations with data having
dependence between sections. Currently we use a simple trade-off model between redis-
tribution and pipelineing to choose between these alternatives. The redistribution of an
array of size N on p processors requires communication of N-N/p elements. The pipelined
computation requires to communicate f*N*p/d elements, where d is the array size in the
pipelined direction and f is the number of the dependence vectors. The cost of pipeline
startup is a factor of 1+pd/N of the execution time. A similar model is used to trade-off re-
distribution and serial execution of a nest.

The propagation of the mapping directives along arcs of PCFG results in annotation
of each source and sink of the graph with the directives. These annotations, together with
information on in/out/through routine arguments and on the common blocks used in
the routine, the final redistributions are made and HPF routine interface are generated.
The HPF standard requires a routine to preserve the distribution of arrays visible to other
subroutines. To comply with this requirement we perform adjustment of the annotations:

« For each array argument, we choose the mapping of the array at one of the
source node of PCFG; include this mapping (as prescriptive mapping) at the
subroutine interface; and remove the mapping directives from the source node.

« For each leaf node of PCFG, we compare the final mapping of each subroutine
argument with the mapping on the leaf and restore the mapping if necessary.

6. Interprocedural Data Distribution

So far we assumed that statements do not include routine or function calls. To handle
routine calls we can either inline the routine or use HPF routine interface to express the
data mapping in the routine. The inlining requires the same analysis at each call statement
and may not result in any useful distribution if there is no single data distribution inside
the routine. The use of HPF routine interface limits the expression of the data mapping
through the routine interface. The data mappings in routine must comply with the HPF
requirement of preserving data distributions by a callee.

ADAPT uses the interprocedural data distribution methods developed at [9], [13],

11



[15] and [19]. At each call site, the interprocedural analysis provides the mapping of dum-
my arguments onto actual arguments. This mapping is used to attach the routine align-
ment graph to the nest alignment graph and transform the mapping declared at routine
interface into the nest mapping. If the mappings are compatible, meaning that the number
of distributed dimensions for combined graphs is larger than 0, then the scope of both
mappings can be combined, otherwise data redistribution at each call site will be neces-

sary.

7. ADAPT Implementation

ADAPT is written in C++ and is based on a few standard C++ classes such as List,
Point, Vector and Matrix. Some advanced classes Polynomial (symbolic polynomial), SL-
Form (system of linear forms) and DGraph (NAS Directed Graph class) have been imple-
mented and widely used in the tool. The burden of Fortran program parsing, analysis and
code generation is placed on CAPTools [11].

CAPTools (Computer Aided Parallelization Tools) have been developed in Universi-
ty of Greenwich, UK [11]. CAPTools demonstrated the ability to parse, analyze and par-
allelize a number of CFD applications, including NPB and ARC3D. As a result of an
agreement between the University of Greenwich and NASA Ames Research Center, the
CAPTools group provided NAS Parallel Tools Group with an APL This includes a de-
scription of internal data structures used by CAPTools, internal program representation
(application data base), a number of utilities and a code generator.

ADAPT uses the CAPTools generated database to perform a single pass through the
source program. It builds a PCFG for the whole application and a data transfer graph
(DTG) for each loop nest. It annotates each arc with the affinity relation between arrays
representing the arc ends. The complexity of processing a nest with n arrays is O(n#) and
is dominated by computing the closure of affinity relation. As a result, data alignment di-
rectives are generated for each nest. The directives are then lifted bottom up along the arcs
of PCFG by creating subroutine interfaces and either merging directives or placing redis-

tribution directives.

8. Experiments with CFD Codes
ADAPT have been applied to NPB to an aerodynamic application ARC3D. A quali-

12



tative comparison with the data distributions used in handwritten HPF implementations
of NPB [7] working on single structured grid: BT, SP, LU and FT and ARC3D [8] is given
in Table 1. All applications except LU use redistribution of data. The redistributions and
their locations in the code have been successfully determined by ADAPT (linel). Inall ap-
plications except SP some distributed arrays are passed as subroutine arguments.
ADAPT was able to use the interprocedural information generated by CAPTools to move
the distributions across subroutine boundaries and generate HPF subroutine interfaces
(lines 2 and 3). For simple dependences between distributed array sections (BT,SP,LU and
ARC3D) ADAPT was able to ignore the redistributions and leave the pipelineing to the
compiler, line 4. ADAPT was not able to generate redistributions of some boundary data
necessary for efficient computations of boundary conditions (BC) in ARC3D, line 5 (note
that BC was excluded from the plot on Figure 6). Based on the analysis of index expres-
sions and loop nest indices ADAPT was able to detect and skip iteration loop, line 6, as
well to perform qualification of privatizable arrays, line 7. Neither of the considered ap-
plications would benefit from cyclic distribution nor ADAPT was enabled to generate cy-

clic distributions, lines 8 and 9.
TABLE 1. ADAPT (A) versus Manual (M) HPF Data Distribution for Scientific Codes.

[+ uses the feature, - does not use the feature, * depends on compiler support, /
automatically generated)

Benchmark BT SP LU FT ARC3D
DD Features M|(A|M| A|M|AIM A|M|A
1. Redistribution +yVS |+ L -1+ v/ + | v
2. Interprocedural +lv-1 -+ 7+ 7 + | v
3. Interfaces + |1V - -+t S+ S + | v/
1. Pipeline? oA BN B AR L A - o
5. BC redistribution -l - - - - - |- - + -
6. Time loop invariant + |/l +| /L |+ +] + | v
7. Privatization (new) + |+ |+ - v + v
8. Block distribution + | L+ L SV + | v/
9. Cyclic distribution S T B - -] - - - -

a. The feature can be used if the compiler is able to support pipelineing

The worst case complexity of O( n*) for computing the closure of the affinity relation

13



(where n is the maximum number of nodes in the nest DTG) never have been reached,
Table 2. The execution time (line 6) was dominated by other factors such as computing of
the affinity relations from index expressions and the lifting of the directives along edges
of PCFG. The complexity of these operations is proportional to the number of arcs in DTG
(line 3) and in PCFG (line 4) respectively. Overall ADAPT execution time was significant-
ly less than the CAPTools (line 5) analysis time.

TABLE 2. ADAPT Performance

Benchmark BT SP LU FT ARC3D
1. Number of subroutines 48 33 34 31 33
2. Number of nests 165 51 43 17 82
3. Max size of DTG (nodes,arcs) (30,381) (29,148) (39480) | (12,16) | (48,201)
4. Size of PCFG (nodes,arcs) (165,220) | (173,229) | (174,208) | (85,122) | (253,297)
5. CAPTools analysis time (min.) 72 67 26 30 23
6. ADAPT CPU time (sec.)? 3 3 14 1 6

a. The execution time is on 150 MH SGI R5000 machine, including time for code generation and excluding
time for creating CAPTools data base.

Finally we have applied some hand editing to the code generated by ADAPT for BT,
SP and FT" and ARC3D. The compiler was able to compile code, but performance was
very poor. Few hand editing steps were necessary to get good code performance. First,
pghpf2.4 does not support the REDISTRIBUTION statement and all redistributions were
implemented by hand. It included copying distributed arrays to arrays with an alterna-
tive distribution and substituting the arrays with alternative distribution instead of orig-
inal arrays in the scope of the REDISTRIBUTION directive. Second, some linear algebra
routines called in BT take array section as an argument. The compiler passed the section
by value which was very slow. We performed inlining of the routines by hand significant-
ly iproved performance. The performance of resulted code was comparable with the per-

formance of the handwritten HPF code and with the MPI code, Figure 6.

“An inspection of the DTG and PCFG of the FT suggested that one of three 3D complex arrays is redundant. A remov-
ing of this array from the benchmark reduced the memory requirements by 30% and slightly improved performance.
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FIGURE 6. Comparison of MPI version {(dotted curves), handwritten HPF version (solid curves) and
ADAPT generated (dashed curves) versions of BT,SP, FT and ARC3D. The boundary condition subroutine
excluded from ARC3D plot since it requires a number of hand tuning steps.

9. Automatic Data Distribution Techniques

A number of methods for automatic data mapping have been designed: [2],[51,[13],
[15],[16],17],[18],[23]. Some of the techniques were developed in a framework of auto-
matically parallelizing compiler, other in the context of parallelizing tools. An extensive
survey of data layout methods is given in [15] and a case study of 4 approaches is given
in [3]. General requirements to data distribution tools are listed in [21]. We will concen-

trate on techniques suitable for distribution of data defined on a single or multiple struc-

15



tured grids. Most of the existing tools (with CAPTools an exception) were implemented
as a “demonstration of concept” and none of them have demonstrated ability to analyze
medium or large size codes and generate an efficient data parallel program.

An approach to data layout based on a decomposition of procedures into phases and
finding the best static alignment for each phase was developed by Li and Chen in [16].
The algorithm performs inter-dimensional alignment as a first step and intra-dimensional
alignment as the second step. The inter-dimensional alignment is formulated as a parti-
tion problem for the Component Affinity Graph (CAG). The authors propose a heuristic al-
gorithm to find the best alignment, in general, however, they show that the problem is
NP-complete.

Paradigm [18]. The approach is based on the analysis of the communication graph
generated by Parafrase-2. The graph nodes are program statements and graph edges are
data flows between statements weighted with cost of the communications. The graph is
recursively decomposed into a hierarchy of phases by removing a maximal cut on each
step. The decomposition of the communication graph stops at the point when a static dis-
tribution can not be improved by further decomposition. Then a phase transition graph
is built with the edges weighted by the cost of redistributions. A critical path in the graph
gives the best sequence of phases and phase transitions. The tool have been successfully
applied to 2D FFT and ADI kernels.

SUIF [2],{17],[23]. An algorithm for dynamic data decomposition is given in [2]. It is
applicable to an arbitrary sequence of loop nests with loop boundaries and array refer-
ences described by linear functions. It involves 3 main steps: 1. finding communication
free decomposition, 2. if such a decomposition can not be found the algorithm searches
for a decomposition with pipelined communications, 3. if such partition can not be found
the algorithm applies a heuristic to group the nests to find a partition with pipelined com-
munications within each group and redistributing data between the groups. The algo-
rithm was enhanced in [17] to find partitions minimizing synchronizations.

dHPF [13], [15]. The approach consists of reduction of the data distribution problem
to a Boolean optimization problem and applying of a commercial package (CPLEX) for
solving it. The reduction proceeds in a number of steps. On the first step the program is

partitioned into phases. Then for each phase a CAG is built. The partitions of CAG are
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candidate data layouts. The optimal layout is a critical path in the data layout graph
which nodes are the candidate layouts and edges are possible remappings of the layouts
between the phases. The edges are weighted with an empirical estimation of the remap-
ping cost. The resulting optimization problem is then formulated as 0-1 programming
problem and solved with aid of CPLEX. The tool was able to generate alignment and dis-
tribution statements for ADI kernel and Erlebacher and Tomcatv benchmarks.

CAPTools [6], [11], [12]. CAPTools has an ability to apply block, cyclic and block/cy-
clic distributions to data defined on structured [6] and on unstructured [11] grids. The dis-
tribution requires the user to specify an array and a dimension to be distributed. As soon
a distribution have been defined a MPI code implementing “owner computes” rule is

generated.

10. Conclusions and Future Work

We described methods for translating data dependence and affinity relations into
data mapping directives. These methods have been used for generating data distributions
for HPF versions of NPB [7] and ARC3D [8]. Our algorithms for program analysis and
derivation of data distributions are efficient three pass algorithms. The majority of algo-
rithms have linear complexity with exception of some graph algorithms having complex-
ity O(n?) (n is the number of variables used in the program nests) in the worst case.

We implemented the methods in an Automatic Data Alignment and Placement Tool
(ADAPT). Initial comparison shows that the data mappings generated by ADAPT are
very close to the data mapping directives used in hand written HPF version of NPB and
ARC3D. We aim ADAPT at real CFD applications such as OVERFLOW [10]. Also we are
considering to use data affinity relations for restructuring serial programs to improve
cache utilization.
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